

Micro

McECocherin

Designed by Amy McGuire, B-books, Ltd.

Utility Analysis

- Utility
- Satisfaction derived from consumption
- Subjective
- Assumption
- Tastes are given
- Tastes are relatively stable

The Law of Diminishing Marginal Utility

- Total utility
- Total satisfaction
- Marginal utility
- Change in total utility from one-unit change
 in consumption

The Law of Diminishing Marginal Utility

- The more of a good consumed
- The smaller the increase in total utility
- Marginal utility from each additional unit
- Declines as more is consumed
- Disutility
- Negative marginal utility
- "Been there; done that"

LO^{2}
 Measuring Utility

- Units of utility
- Each person has a uniquely subjective utility scale
- Total utility
- Sum of marginal utilities

Utility Derived from Drinking Water After Jogging Four Miles

Amount Consumed

(8-ounce glasses)
Total Utility Marginal Utility

0	0	-
1	40	40
2	60	20
3	70	10
4	75	5
5	73	-2

Total Utility and Marginal Utility You Derive from Drinking Water after Jogging Four Miles

Total utility increases with each of the first 4 glasses of water consumed but by smaller and smaller amounts The $5^{\text {th }}$ glass causes TU to fall
(b) Marginal utility

Marginal utility declines
MU of the $5^{\text {th }}$ glass is negative

Utility Maximization Without Scarcity

- Free good
- Increase
consumption as marginal utility is positive
- Two free goods
- Until the marginal utility of each is 0
- Tastes, preferences

Total and Marginal Utilities from Pizza and Videos

Pizza				Video Rentals			
(1) Consumed per Week	(2) Total Utility	(3) Marginal Utility	(4) Marginal Utility per Dollar if $p=\$ 8$	(5) Viewed per Week	(6) Total Utility	(7) Marginal Utility	(8) Marginal Utility per Dollar if $p=\$ 4$
0	0	-	-	0	0	-	
1	56	56	7	1	40	40	10
2	88	32	4	2	68	28	7
3	112	24	3	3	88	20	5
4	130	18	$21 / 4$	4	100	12	3
5	142	12	11/2	5	108	8	2
6	150	8	1	6	114	6	$11 / 2$

Utility Maximization With Scarcity

Goods - not free

- Tastes, preferences
- Limited income
- Maximize utility
- Equilibrium
- Any affordable change will reduce utility

Utility-Maximizing Conditions

- Equilibrium
- There is no way to increase utility by reallocating the budget
- Last \$ spent on each good yields the same marginal utility
- Higher-priced goods must yield more marginal utility than lower-price goods

$$
\frac{M U_{p}}{p_{p}}=\frac{M U_{v}}{p_{v}}
$$

LO^{2}
 Water, Water, Everywhere

- Diamonds
- Not a necessity; expensive; relatively scarce
- Water
- Necessity; cheap; abundant
- Diamonds-Water paradox
$-\mathrm{TU}_{\text {water }}>\mathrm{TU}_{\text {diamonds }}$
- Last gallon of water $\mathrm{MU}_{\text {water }}$ very low
- Last diamond $\mathrm{MU}_{\text {diamond }}$ high
- $\mathrm{P}_{\text {diamond }}>\mathrm{P}_{\text {water }}$

Total and Marginal Utilities from Pizza and Videos After the Price of Pizza Decreases from \$8 to \$6

Pizza
(3)
Marginal
Utility

$$
\begin{aligned}
& \text { Marginal } \\
& \text { Utility per } \\
& \text { Dollar if }
\end{aligned}
$$ Exhibit 4 0

Marginal Utility per

Dollar if $p=\$ 4$

$$
-
$$10753

2
$11 / 2$

$$
=\$ 4
$$

f
$6 \quad$ C
Copyright ©2010 by South-Western, a division of Cengage Learning. All rights reserved

deo Rentals

远
-

lo

lil

$$
14
$$

Marginal Utility and the Law of Demand

- Exhibit 3
- Max U; budget = \$40
- $Q_{p}=3 ; P_{p}=\$ 8$; one point on D curve
${ }^{-}\left(Q_{v}=4 ; P_{v}=\$ 4\right)$
- Price of pizza drops to $\$ 6$, other things constant
- Max U; budget = \$40
- $Q_{p}=4 ; P_{p}=\$ 8$; second point on D curve
${ }^{-}\left(Q_{v}=4 ; P_{v}=\$ 4\right)$

Demand for Pizza Generated from Marginal Utility

Consumer Surplus

- Value of a good purchased must at least equal the P
- D curve
- Marginal valuation
- Consumer surplus
- Consumer bonus
- Value of total utility minus total spending
- Area under D, above P

Consumer Surplus from Sub Sandwiches

When P drops to $\$ 3$, consumer surplus increases by $\$ 4$

Market D and Consumer Surplus

- Market D curve
- Horizontal sum of individual D curves
- Total quantity demanded, per period, by all consumers, at various prices
- Consumer surplus for the market
- Amount consumers are willing to pay minus amount they pay
- Net benefit for consumers
- Economic welfare

Summing Individual Demand Curves to Derive Market Demand for Sub Sandwiches

Subs per month
Market demand curve is the horizontal sum of individual demand curves

Market Demand and Consumers Surplus

The Marginal Value of Free Medical Care

- Free medical care
- Consumed until marginal utility $=0$
- High marginal cost to taxpayers
- Waste, fraud, abuse
- Less incentive for healthy behavior
- Charge \$1 per doctor visit Reduce cost to taxpayers

Role of Time in Demand

- Consumption
- Money price
- Time price
- Willing to pay premium for time-saving goods

Indifference Curves and Utility Maximization

- Indifference curve
- Combinations of goods
- Same total utility
- Slope downward to right
- Convex to origin

An Indifference Curve

Indifference Curves and Utility Maximization

- Marginal rate of substitution MRS
- Willingness to trade
- Slope of indifference curve
- Law of diminishing MRS
- Diminishing slope of I curve

Indifference Curves and Utility Maximization

- Indifference map
- Graphical representation of consumer's tastes
- Each I: different utility levels
- The further indifference curve from origin
- The higher the utility
- More of both goods

An Indifference Map

Indifference curves I_{1} through I_{4} are examples from a consumer's particular indifference map.

Indifference curves farther from origin depict higher levels of utility.

A line intersects each higher indifference curve, reflecting more of both goods.

Indifference Curves Do Not Intersect

Indifference curves cannot intersect

Indifference Curves and Utility Maximization

- The budget line
- Combinations of goods
- Able to buy
- Consumption possibilities frontier
- Slope of budget line:

$$
=-\frac{I / p_{v}}{I / p_{p}}=\frac{p_{p}}{p_{v}}
$$

A Budget Line

Indifference Curves and Utility Maximization

- Consumer equilibrium at the tangency
- Maximize utility
- Indifference curve tangent to budget line

$$
\left.\begin{array}{l}
M R S=\frac{p_{p}}{p_{v}} \\
M R S=\frac{M U_{p}}{M U_{v}}
\end{array}\right\} \frac{M U_{p}}{p_{p}}=\frac{M U_{v}}{p_{v}}
$$

Utility Maximization

Indifference Curves and Utility Maximization

- Effects of a change in price
- Derive the D curve
- Income effect
- Substitution effect

Effect of a Drop in the Price of Pizza

A reduction in the price of pizza rotates the budget line rightward.
The consumer is back in equilibrium at point e" along the new budget line.
(b)

A drop in price of pizza increases quantity demanded.

