

Micro McEacharn ECON 2010-2011

CHAIFUS Consumer Choice and Demand

Designed by Amy McGuire, B-books, Ltd.

Chapter 6

Copyright ©2010 by South-Western, a division of Cengage Learning. All rights reserved

1

Utility Analysis

- Utility
 - Satisfaction derived from consumption
 - Subjective
- Assumption
 - Tastes are given
 - Tastes are relatively stable

66 Different people may have different tastes, but an individual's tastes are not constantly in flux.

 LO^1

The Law of Diminishing Marginal Utility

- Total utility
 - Total satisfaction
- Marginal utility
 - Change in total utility from one-unit change in consumption

Chapter 6

The Law of Diminishing Marginal Utility

- The more of a good consumed
 - The smaller the increase in total utility
- Marginal utility from each additional unit
 - Declines as more is consumed
- Disutility
 - Negative marginal utility
- "Been there; done that"

Measuring Utility

- Units of utility
- Each person has a uniquely subjective utility scale
- Total utility
 - Sum of marginal utilities

 O^2

Utility Derived from Drinking Water After Jogging Four Miles

Amount Consumed (8-ounce glasses)	Total Utility	Marginal Utility
0	0	-
1	40	40
2	60	20
3	70	10
4	75	5
5	73	-2

Exhibit 2

Total Utility and Marginal Utility You Derive from Drinking Water after Jogging Four Miles

Marginal utility

40

20

(b) Marginal utility

0 1 2 3 4 5 Glasses (8-ounce)

Total utility increases with each of the first 4 glasses of water consumed but by smaller and smaller amounts The 5th glass causes TU to fall

Marginal utility declines MU of the 5th glass is negative

Chapter 6

LO²

Utility Maximization Without Scarcity

- Free good
 - Increase consumption as marginal utility is positive
- Two free goods
 - Until the marginal utility of each is 0
- Tastes, preferences

Exhibit 3

Total and Marginal Utilities from Pizza and Videos

Pizza			Video Rentals					
(1) Consumed per Week	(2) Total Utility	(3) Marginal Utility	(4) Marginal Utility per Dollar if p = \$8	(5) Viewed per Week	(6) Total Utility	(7) Marginal Utility	(8) Marginal Utility per Dollar if p = \$4	-
0	0	—	—	0	0	—	- 6	
1	56	56	7	1	40	40	10 💦	2
2	88	32	4	2	68	28	7	
3	112	24	3	3	88	20	5	W.
4	130	18	21/4	4	100	12	3	PE
5	142	12	11/2	5	108	8	2	
6	150	8	1	6	114	6	11/2	

Utility Maximization With Scarcity

- Goods not free
- Tastes, preferences
- Limited income
- Maximize utility
 - Equilibrium
 - Any affordable change will reduce utility

LO² Utility-Maximizing Conditions

Equilibrium

- There is no way to increase utility by reallocating the budget
- Last \$ spent on each good yields the same marginal utility
- Higher-priced goods must yield more marginal utility than lower-price goods

$$\frac{MU_p}{p_p} = \frac{MU_v}{p_v}$$

LO² Water, Water, Everywhere

- Not a necessity; expensive; relatively scarce
- Water
 - Necessity; cheap; abundant
- Diamonds-Water paradox
 - TU_{water} >TU_{diamonds}
 - Last gallon of water MU_{water} very low
 - Last diamond MU_{diamond} high

• $P_{diamond} > P_{water}$

Exhibit 4

Total and Marginal Utilities from Pizza and Videos After the Price of Pizza Decreases from \$8 to \$6

Pizza					Video Rentals			
(1) Consumed per Week	(2) Total Utility	(3) Marginal Utility	(4) Marginal Utility per Dollar if p = \$6	(5) Viewed per Week	(6) Total Utility	(7) Marginal Utility	(8) Marginal Utility per Dollar if p = \$4	
0	0	—	—	0	0	—	—	
1	56	56	9 1⁄3	1	40	40	10	
2	88	32	5 1/3	2	68	28	7	
3	112	24	4	3	88	20	5	
4	130	18	3	4	100	12	3	
5	142	12	2	5	108	8	2	
6	150	8	11⁄2	6	114	6	11⁄2	

LO²

Marginal Utility and the Law of Demand

Exhibit 3

- Max U; budget = \$40
 - $Q_p = 3; P_p = \$8; one point on D curve$

• (
$$Q_v = 4$$
; $P_v = 4)

- Price of pizza drops to \$6, other things constant
 - Max U; budget = \$40
 - Q_p = 4; P_p = \$8; second point on D curve
 (Q_v = 4 ; P_v = \$4)

Exhibit 5

Demand for Pizza Generated from Marginal Utility

Chapter 6

Consumer Surplus

- Value of a good purchased must at least equal the P
- D curve
 - Marginal valuation
- Consumer surplus
 - Consumer bonus
 - Value of total utility minus total spending
 - Area under D, above P

Exhibit 6

Chapter 6

Consumer Surplus from Sub Sandwiches

When P drops to \$3, consumer surplus increases by \$4

Market D and Consumer Surplus

- Market D curve
 - Horizontal sum of individual D curves
 - Total quantity demanded, per period, by all consumers, at various prices
- Consumer surplus for the market
 - Amount consumers are willing to pay minus amount they pay
 - Net benefit for consumers
 - Economic welfare

Exhibit 7

Summing Individual Demand Curves to Derive Market Demand for Sub Sandwiches

Market demand curve is the horizontal sum of individual demand curves

Chapter 6

LO³

 \mathbf{O}

Exhibit

Market Demand and Consumers Surplus

Consumer surplus at a price of \$2 is shown by the blue area.

If the price falls to \$1, consumer surplus increases to include the green area.

At a zero price, consumer surplus increases to the entire area under the *D* curve.

LO³ The Marginal Value of Free Medical Care

- Free medical care
 - Consumed until marginal utility = 0
 - High marginal cost to taxpayers
 - Waste, fraud, abuse
 - Less incentive for healthy behavior
- Charge \$1 per doctor visit
 - Reduce cost to taxpayers

Role of Time in Demand

- Consumption
 - Money price
 - Time price
- Willing to pay premium for time-saving goods

Indifference Curves and Utility Maximization

Indifference curve

- Combinations of goods
- Same total utility
- Slope downward to right
- Convex to origin

An Indifference Curve

An indifference curve (I) shows all combinations of two goods that provide a particular consumer with the same total utility.

Indifference curve:

- negative slope
- convex to origin

Exhibit A

Indifference Curves and Utility Maximization

Marginal rate of substitution MRS

- Willingness to trade
- Slope of indifference curve
- Law of diminishing MRS
 - Diminishing slope of I curve

Indifference Curves and Utility Maximization

Indifference map

- Graphical representation of consumer's tastes
- Each I: different utility levels
- The further indifference curve from origin
 - The higher the utility
 - More of both goods

Exhibit B

An Indifference Map

Indifference curves I_1 through I_4 are examples from a consumer's particular indifference map.

Indifference curves farther from origin depict higher levels of utility.

A line intersects each higher indifference curve, reflecting more of both goods.

Exhibit C

Indifference Curves Do Not Intersect

Chapter 6

Indifference Curves and Utility Maximization

- The budget line
 - Combinations of goods
 - Able to buy
 - Consumption possibilities frontier
- Slope of budget line:

$$= -\frac{I/p_v}{I/p_p} = \frac{p_p}{p_v}$$

Exhibit D

A Budget Line

Copyright ©2010 by South-Western, a division of Cengage Learning. All rights reserved

30

Indifference Curves and Utility Maximization

- Consumer equilibrium at the tangency
 - Maximize utility
 - Indifference curve tangent to budget line

$$MRS = \frac{p_{p}}{p_{v}}$$

$$MRS = \frac{MU_{p}}{MU_{v}}$$

$$\frac{MU_{p}}{p_{p}} = \frac{MU_{v}}{p_{v}}$$

Exhibit E

Utility Maximization

Indifference Curves and Utility Maximization

- Effects of a change in price
 - Derive the D curve
- Income effect
- Substitution effect

Exhibit F

Effect of a Drop in the Price of Pizza

(b)

A reduction in the price of pizza rotates the budget line rightward. The consumer is back in equilibrium at point e" along the new budget line. A drop in price of pizza increases quantity demanded.

Chapter 6

Exhibit G

Substitution and Income Effects of a Drop in the Price of Pizza from \$8 to \$4

A reduction in the price of pizza moves the consumer from e to e^* .

Substitution effect: *e* to *e*'; consumer's reaction to a change in relative prices along the original indifference curve.

Income effect: e' to e*; moves the consumer to a higher indifference curve at the new relative price ratio.

Chapter 6 Copyright ©2010 by South-

3

e

e

4 5

e*

F

Income

effect

|*

Video rentals per week

10

С

5

4

0

Substitution

effect

Copyright ©2010 by South-Western, a division of Cengage Learning. All rights reserved

10

Pizzas per week